
Evaluating DUC 2005 using Basic Elements

Eduard Hovy, Chin-Yew Lin, and Liang Zhou

Information Sciences Institute

University of Southern California

Marina del Rey, CA 90292

{hovy, cyl, liangz}@isi.edu

Abstract

In this paper we introduce Basic Elements, a

new way of automating the evaluation of text

summaries. We show that this method corre-

lates better with human judgments than any
other automated procedure to date, and over-

comes the subjectivity/variability problems of

manual methods that require humans to pre-

process summaries to be evaluated. This is

demonstrated on DUC 2005 peer systems and

peer-produced summaries.

1 Introduction

When a language technology area develops a standard

corpus on which to develop its techniques plus an auto-

mated method of evaluating results to drive develop-

ment, progress tends to speed up dramatically.

It has long been a goal of the text summarization

community to find automatic methods for summary
evaluation that produce reliable and stable scores. All

automated methods today work by comparing the sys-

tem’s summary to one of more reference summaries

(ideally, produced by humans). But even leaving aside

the problems of evaluating style and focusing just on

summary content, evaluation has proven problematic.

Experience has shown that measuring content at sen-

tence granularity is not precise enough: generally sen-

tences contain too many distinct pieces of information,

some of which may be important to include in a sum-

mary and some of which not. However, comparing con-
tent at the word level is also not satisfactory: a word

taken individually cannot be rated since it may play

roles of various importance in various contexts with

other words.

People have tried to overcome this problem by

manually bracketing in the summary to be evaluated

units of varying lengths that contain just the ‘important’

information, which a subsequent procedure (manual or

automatic) can then rate. But this approach introduces

human variability and typically incurs a significant ef-

fort.

In this paper we describe an automated method to

produce useful chunks of varying size, and show that

this method equals other automated methods of scoring

summaries. We introduce Basic Elements (BEs) in Sec-

tion 2. Section 3 provides details and Section 4 the re-

sults of evaluation by BEs on DUC 2005. Conclusions

and some future work are given in Section 5.

2 Basic Elements

2.1 Definition

We address the problem of unit size by automatically
producing a series of increasingly larger units, starting

at the single word level. Unit importance can be deter-

mined by a variety of automated ways, described below.

We address the problem of unit comparability by focus-

ing on small-sized units, where paraphrase alternatives

are rather limited.

In this approach, we break down each reference sen-

tence into a set of minimal semantic units, which we

call Basic Elements (BEs). After some experimenta-

tion, we have decided to define BEs as follows:

• the head of a major syntactic constituent (noun,

verb, adjective or adverbial phrases), expressed as a
single item, or

• a relation between a head-BE and a single depend-

ent, expressed as a triple (head | modifier | relation).

Starting small like this allows one to automate the proc-

ess of unit identification and, to some degree, facilitates

the matching of different equivalent expressions.

Grouping smaller units into larger ones can be done

automatically, even, we believe, to the larger-sized

chunks typically used in the Pyramid Method.

As described below, we can produce BEs automati-

cally in several ways Most of them involve a syntactic
parser to produce a parse tree and a set of ‘cutting rules’

to extract just the valid BEs from the tree.

With units of minimal length, one can much more

easily decide whether any two units match (express the

same meaning) or not. For instance, “United Nations”,

“UN”, and “UNO” can be matched at this level (but

require work to isolate within a longer unit or a sen-

tence), allowing any larger unit encompassing this to
accept any of the three variants. Also, since the units

are matched at the lowest levels, the danger of poten-

tially double-counting segments that are contained in

longer ones can also be avoided.

2.2 The Four Aspects of BEs

In order to implement Basic Elements as a method of

evaluating summary content, four core questions must

be addressed:

1. What or how large is a Basic Element? The answer

to this is strongly conditioned by: How can BEs be

created automatically?

2. How important is each BE? What basic score

should each BE have?

3. When do two BEs match? What kinds of matches
should be implemented, and how?

4. How should an overall summary score be derived

from the individual matched BEs’ scores?

Different answers to each of these questions provide a

different summary evaluation method. The Pyramid

Method, for example, takes as BEs approximately

clause-length semantic units shared by the reference

summaries; gives each unit a score equal to the number

of reference summaries containing it; allows two units

to match when they express all or most of the same se-

mantic content, as judged by the assessors; and derives
the overall score by summing the scores of each unit of

the candidate summary and normalized by the overall

score of an ideal summary of equal size. In contrast,

ROUGE uses as BEs various ngrams (for example, uni-

grams); scores each unigram by a function that depends

on the number of reference summaries containing that

unigram; allows unigrams to match under various pa-

rameterizable conditions (for example, exact match

only, or root form match); and derives the overall sum-

mary score by some weighted combination function of

unigram matches.

The BE Package is an overall framework in which
various solutions to the four core aspects are imple-

mented, and which therefore serves as a generalization

over the particular methods and as an environment in

which they can be compared.

There are multiple possible approaches to imple-

menting each of these four points in software. There-

fore, exploring the whole space in order to find the most

stable and optimum evaluation configuration is not a

trivial task. The current BE Package (Section 6) pro-

vides several parameterized modules as well as APIs for

people wishing to build and test their own. Used as

provided, the BE Package provides several implementa-

tions of the ideas of Van Halteren, Teufel, Nenkova, and

Passonneau. We have performed a series of experi-

ments to obtain reasonably good modules and parameter

settings, but welcome additional studies and improve-
ments.

3 The BE Method

The BE Package contains instances of four principal

modules: the BE Breakers (that create individual BE

units, given a text), the BE Scorers (that assign scores to

each BE unit individually), the BE Matcher modules

(that rate the similarity of any two BE units), and the BE

Score Integrators (that produce a total score given a list

of rated BE units). We have implemented and tested

versions of each of these modules, and in some cases

multiple versions. After outlining the procedure we

discuss each module in turn.

3.1 The BE Procedure

The task is to provide a numeric score that reflects the

quality of a given summary. Input to the BE Package is
a set of reference (gold standard) summaries and the

given summary to be rated. The Package first creates a

set of BEs for each reference summary and integrates

the sets by matching the individual BEs to obtain a sin-

gle list of rated BEs, ranked from most valuable to least.

(This first step needs of course not be repeated for sub-

sequent use of the same reference summaries.) The

summary to be evaluated is then also subjected to the

BE breaker, and its BEs are matched against the ranked

BE list. Matched BEs’ scores are integrated and the

resulting score is returned.

3.2 Creating Units: The BE Breaker Module

The BE Breaker accepts a sentence as input and pro-
duces a list of BEs as output. Different BE Breakers

produce different BEs. The intuition behind a BE is that

it should be a single coherent semantic unit, such as

“United States of America”, “coffee mug”, “the/a plane

landed”, “the landing was safe”, etc. There is much

room for discussion here, but the basic desiderata are:

small size (to allow proper scoring of atomic bits of

content), regularity/simplicity of definition, and auto-

matic production.

As mentioned above, some experimentation led us to

(for the present) define BEs as follows:

• the head of a major syntactic con-
stituent (noun, verb, adjective or
adverbial phrases), or

• a relation between a head-BE and a
single dependent.

Some BE breaker modules provide the relations; others

do not.

We presently produce BEs in several ways. Most of

them involve a syntactic parser to produce a parse tree

and a set of ‘cutting rules' to extract just the valid BEs

from the tree. We have built and experimented with the
following BE breakers:

• Charniak parser + CYL rules (abbrev. as BE-L)

• Collins parser + LZ rules (abbrev. as BE-Z)

• Minipar + JF rules (abbrev. as BE-F)

• Microsoft parser1 (Heidorn, 2000) + cutting rules

BE-F: BE-F extracts BEs from parses generated by

Minipar (Lin, 1995). Minipar produces a dependency

parse of a sentence, in which each word is related to

another word with labels such as subj (subject), obj (ob-

ject), comp1 (complement), mod (modifier), etc. BE-F

extracts word pairs in some dependency relationship

and generates a BE element.
During preprocessing for BE-F, compound nouns and

verbal idioms such as 'turn over' and ‘Secretary General'

are converted to single parse tree nodes using Minipar

information. After parsing, BE-F reifies embedded ten-

tative nodes that express semantic subject or object with

semantic nodes. BE-F then extracts BEs from depend-

ency relationships in the parse tree. For PPs, the PP

head is related by its preposition to its governing ele-

ment (e.g., for ‘against Libya’ modifying the word

‘sanction’, the extracted BE will be [sanction | Libya |

against]). In an embedded clause such as ‘that clause’,
the main verb of the embedded clause has a relationship

with the modifying verb. If there is no subject word in

such an embedded clause, its semantic subject and its

main verb form a BE with the relationship ‘subject’

(and similarly for the case of ‘object’).

BE-L: BE-L is based on constituency parse trees gener-

ated by Charniak’s statistical parser (Charniak 2000).

Converting a constituency parse tree into dependency

triples is not new; Lin (1995) proposed a method based

on Magerman’s (1994) head finding rules. A similar

approach was used in Collins’s PCFG parser (1999).

We followed the same approach, applying Magerman’s
head finding rule to extract head-modifier dependencies.

In order to identify the semantic relation between head

and modifier, we trained a semantic role labeler using

SVM based on PropBank data. Due to space limita-

tions, we cannot provide details about the semantic la-

beler. However, its accuracy on the core argument

identification (ARG0-5) was at about 93%. Examples

from BE-L are shown below:

1 We are indebted to Lucy Vanderwende and her group at
Mircosoft for parsing our test collection and allowing us to
experiment with the results.

“Two Libyans were indicted for the Lockerbie bomb-

ing in 1991.”

 <Libyans|two|CARDINAL>

 <indicted|Libyans|ACCUSED>

 <indicted|bombing|CRIME>

 <indicted|1991|TIME>

Although BE-L achieves performance similar to BE-

F and includes semantic labels for relations, it is much

slower than BE-F. The speed bottleneck is mainly due

to Charniak’s parser and the extra time needed to carry

out semantic labeling of head-modifier relations.

BE-Z: BE-Z applies the Collins parser (Collins, 1999)

and then a different set of cutting rules.

All three sets of cutting rules were developed inde-

pendently, and hence the three engines produce some-

what different results. No single engine always

produces the best results, since different parsers and
rules operate differently well on different sentence con-

structions (especially with long sentences). We have

experimented with combining the BEs from the differ-

ent engines into a single list, but for simplicity of devel-

opment and eventual distribution (different parsers have

different license requirements) we decided to work with

engines individually for now.

Example BEs for “two Libyans were indicted for the

Lockerbie bombing in 1991” are as follows, written as

(head | modifier | relation):

Libyans|NIL|NIL (BE-L)
Libyans|two|NIL (BE-L)

bombing|NIL|NIL (BE-L)

bombing|Lockerbie|NIL (BE-L)

indicted|NIL|NIL (BE-L)

indicted|Libyans|ARG1 (BE-L)

indicted|1991|ARGM-TMP (BE-L)

indicted|bombing|ARG2 (BE-L)

libyans|two|nn (BE-F)

indicted|libyans|obj (BE-F)

bombing|lockerbie|nn (BE-F)

indicted|bombing|for (BE-F)

bombing|1991|in (BE-F)

A typical relation set may be {MOD} or {ARGn

AUX MOD}. BE-L uses PropBank style semantic rela-

tions.

In the past, we have recommended BE-F. However,

recently work has shown that BE-L does even better at

corresponding to human judgments. We are pleased

that the basic idea of BEs is borne out in different im-

plementations. Other breakers will follow in later re-

leases of the package. For research continuity, we

continue to recommend BE-F.

Although we have experimented with multi-word
proper name units (treating "United Nations" as a single

Table 2. Correlation b/w BE and responsive-

BE, which allows it to match "UN", for example), we

cannot distribute this portion of the BE breakers and

matchers, because it relies on a proper name identifier.

We use BBN's IdentiFinder, which may be licensed

from BBN (http://www.bbn.com/). An alternative is

InXight's Thingfinder, which may be purchased from
InXight (http://www.inxight.com/).

3.3 Scoring Units

In the present implementation, each BE gets exactly 1

point for each reference summary it participates in.

This score is weighted depending on the completeness

of the match between the BE and the reference BEs, as

described immediately below. We have not experi-

mented with different weights based on words’ informa-

tion content, etc., although one can obviously do so.

3.4 Comparing and Matching Units

Matching BEs is less difficult than matching whole

phrases, because less variation is possible. Nonetheless,

we have identified a range of increasingly sophisticated

matching strategies, some of which we do not know

how to implement (arranged from strictest/easiest to

most sophisticated):

• lexical identity: the words must match exactly,

without alteration (implemented)

• lemma identity: the root forms of the words must

match (implemented; root forms are obtained from

WordNet)

• synonym identity: the words or any of their syno-

nyms match. Synonyms may be obtained from

WordNet, for example (not implemented yet)

• distributional similarity: words are similar accord-

ing to the cosine distance on mutual information-

based distributional similarity scores, obtained from
the clustering package CBC (Lin and Pantel, 2002)

• (approximate) phrasal paraphrase matching (not

implemented)

• semantic generalization match: BE words are re-

placed by semantic generalizations (“Mother

Theresa” replaced by “human”) and then matched,

at a variety of levels of abstraction. This method

has been implemented and tested but not distrib-

uted, since this relies on named entity identification

and on WordNet

The default is exact lexical identity. The user can al-

ternatively specify lemma identity.
Matching of triplet BEs can either include or ignore

the BEs’ relations, at the user’s choice. In the current

release, only strict lexical matching is provided. De-

pending on whether relation is being matched or not, all

three (head, modifier, and relation) or only the first two

fields have to match completely.

Future more sophisticated matcher modules should

be able to recognize the equivalence (or partial-score

equivalence) or such pairs as “approximately $20 mil-

lion” and “19.8 million dollars”; anaphoric coreference

“he said” and “Joe said”; abbreviations; and metonymy

“Washington announced” and “The US government
announced”.

3.5 Combining Scores and Ranking Units

The implemented score adder module simply adds the

point values of each BE in the summary to be evaluated.

Optimizing the score integration function is a research

task left for later, when a larger corpus of human judg-

ments is available.

3.6 BEs and ROUGE

Note that ROUGE itself is also an instance of the BE

framework, in which the BEs are unigrams (or ngrams

of various types, depending on the parameter choice),

the scoring function is simple unit points, and the sim-

plest matching criterion is lexical identity. ROUGE

scores can be requested as p art of the output of the BE

Package.

4 Judging DUC 2005

4.1 System Ranking

The BE package can be run in two separate parameter-

izations, HM (head-modifier) and HMR (head-modifier-
relation). Table 1 shows the system ranking produced

by running with HMR.

4.2 Correlation: BE vs. Responsiveness

NIST computed the average scaled responsiveness score

of each summarizer across all topics. To validate BE,

we computed the Spearman rank coefficient and Pear-

son coefficient between BE and responsiveness scores.

A high correlation is found, as shown in Table 2.

4.3 Correlation: BE vs. ROUGE

Table 3 shows the correlation between BE and ROUGE.

The ROUGE scores are macro-averaged by NIST.

Table 1. System ranking by BE-HMR.

4.4 Correlation Overview

In Figure 1 we show the overall correlation be-
tween ROUGE, BE, responsiveness, and the

Pyramid method. The label on each link indicates

the parameterization, the Spearman rank coeffi-
cient, and the Pearson coefficient between the met-

rics connected by the link. Correlations shown

here are computed by comparing against the pri-

mary NIST human responsiveness assessment
scores. Only 20 topics, those used in the Pyramid

annotations, were used to compute the scores for

all four methods. The Pyramid scores were com-
puted using the model/reference summaries in-

volved in the annotation process. And the

responsiveness, ROUGE, and BE scores were
computed against all 9 model/reference summaries.

Correlation figures published elsewhere may have

used different number of model summaries or

number of topics.

5 Conclusions and Future Work

Given the number of potential alternatives embodied in

the BE Package, the amount of work required to deter-
mine the optimal combination of parameters and tech-

niques is enormous. We are however very encouraged

by the fact that the first and major bottleneck, the auto-

mated creation of minimal BEs, seems to have been

addressed adequately for now, given by different BE

breaker modules (different parsers and different BE

chunking rules) independently.

The most pressing problem remaining is developing

powerful BE matching routines; if one can match mini-

mal BEs (and paraphrases) accurately then building

matchers for compound BEs should be an interesting

Table 3. Correlation b/w BE and macroavg

ROUGE.

Figure 1. Correlation overview.

but not impossibly difficult exercise. Similarly, deter-

mining optimal weighting functions for individual BEs

and for their combination to maximize correlations with

human judgments requires careful but not impossibly

hard work, and resembles the work recently done by Lin

on ROUGE.
Finally, it is of particular interest to see whether one

can reconstitute within the BE framework an exact

automated version of the factoid work of Van Halteren

and Teufel and the pyramid method of Nenkova and

Passonneau.

References

Amigo, E., V. Peinado, J. Gonzalo, A. Peñas, and F.

Verdejo. 2004. An Empirical Study of the Informa-

tion Synthesis Task. Proceedings of the conference of

the Association for Computational Linguistics (ACL).

Barcelona, Spain.

Charniak, E. 2000. A Maximum-Entropy-Inspired

Parser. In Proceedings of NAACL 2000.

Collins, M. Head-Driven Statistical Models for Natural

Language Parsing. PhD Dissertation, University of

Pennsylvania, 1999.

DUC. 2001–2004. The series of Document Understand-

ing Conference proceedings.

Heidorn, G. 2000. Intelligent Writing Assistance. In R.

Dale, H. Moisl and H. Somers (eds.), A handbook of

natural language processing: Techniques and appli-

cations for the processing of language as text, New

York: Marcel Dekker.

Hori, C., T. Hori, and S. Furui. 2003. Evaluation
Method for Automatic Speech Summarization. Pro-

ceedings of Eurospeec conference. Geneva, Switzer-

land.

Lin, C.-Y. and E.H. Hovy. 2002. Manual and Automatic

Evaluation of Summaries. Proceedings of the

Document Understanding Conference Workshop at

Conference of the ACL (DUC-02). Philadelphia, PA.

Lin, C.-Y. and E.H. Hovy. 2003. Automatic Evaluation

of Summaries using n-gram Co-occurrence Statistics.

Proceedings of the HLT-NAACL conference. Edmon-

ton, Canada.

Lin, D. 1995. A Dependency-based Method for Evaluat-

ing Broad-Coverage Parsers. Proceedings of IJCAI-

95.

Lin, D. and P. Pantel. 2002. Concept Discovery from

Text. Proceedings of Conference on Computational

Linguistics (COLING-02). 577–583. Taipei, Taiwan.

Magerman, D. 1994. Natural Language Parsing as Sta-

tistical Pattern Recognition. Ph.D. Thesis, Stanford

University.

Nenkova, A. and R. Passonneau. 2004. Evaluating Con-

tent Selection in Summarization: The Pyramid

Method. Proceedings of the HLT-NAACL conference.

Boston, MA.

Papineni, K., S. Roukos, T. Ward, and W. Zhu. 2001.

Bleu: A Method for Automatic Evaluation of Ma-

chine Translation. Proceedings of the conference of

the Association for Computational Linguistics (ACL),

311–318, Philadelphia, PA.

Radev, D. and D. Tam. 2003. Summarization Evalua-

tion via Relative Utility. Proceedings of the CIKM

conference. New Orleans, LA.

Van Halteren, H. and S. Teufel. 2003. Examining the

Consensus between Human Summaries: Initial Ex-

periments with Factoid Analysis. Proceedings of the

HLT-NAACL Workshop on Automatic Summariza-

tion. Edmonton, Canada.

